WSIPanopticSegmenter
histolytics.wsi.wsi_segmenter.WsiPanopticSegmenter ¶
Source code in src/histolytics/wsi/wsi_segmenter.py
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
|
__init__ ¶
__init__(reader: SlideReader, model: BaseModelPanoptic, level: int, coordinates: List[Tuple[int, int, int, int]], batch_size: int = 8, transforms: Compose = None) -> None
Class handling the panoptic segmentation of WSIs.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
reader
|
SlideReader
|
The |
required |
model
|
BaseModelPanoptic
|
The model for segmentation. |
required |
level
|
int
|
The level of the WSI to segment. |
required |
coordinates
|
List[Tuple[int, int, int, int]]
|
The bounding box coordinates from |
required |
batch_size
|
int
|
The batch size for the DataLoader. |
8
|
transforms
|
Compose
|
The transformations for the input patches. |
None
|
Source code in src/histolytics/wsi/wsi_segmenter.py
segment ¶
segment(save_dir: str, use_sliding_win: bool = False, window_size: Tuple[int, int] = None, stride: int = None, use_async_postproc: bool = True, postproc_njobs: int = 4, postproc_start_method: str = 'threading', class_dict_nuc: Dict[int, str] = None, class_dict_cyto: Dict[int, str] = None, class_dict_tissue: Dict[int, str] = None) -> None
Segment the WSIs and save the instances as parquet files to save_dir
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
save_dir
|
str
|
The directory to save the output segmentations in .parquet-format. |
required |
Source code in src/histolytics/wsi/wsi_segmenter.py
merge_instances ¶
merge_instances(src: str, dst: str, clear_in_dir: bool = False, simplify_level: float = 0.3, precision: int = None) -> None
Merge the instances at the image boundaries.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
src
|
str
|
The directory containing the instances segmentations (.parquet-files). |
required |
dst
|
str
|
The destination path for the output file. Allowed formats are '.parquet', '.geojson', and '.feather'. |
required |
clear_in_dir
|
bool
|
Whether to clear the source directory after merging. |
False
|
simplify_level
|
float
|
The level of simplification to apply to the merged instances. |
0.3
|
precision
|
int
|
The precision level to apply to the merged instances. If None, no rounding will be made. |
None
|
Source code in src/histolytics/wsi/wsi_segmenter.py
merge_tissues ¶
merge_tissues(src: str, dst: str, clear_in_dir: bool = False, simplify_level: float = 1, precision: int = None) -> None
Merge the tissue segmentations.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
src
|
str
|
The directory containing the tissue segmentations (.parquet-files). |
required |
dst
|
str
|
The destination path for the output file. Allowed formats are '.parquet', '.geojson', and '.feather'. |
required |
clear_in_dir
|
bool
|
Whether to clear the source directory after merging. |
False
|
simplify_level
|
float
|
The level of simplification to apply to the merged tissues. |
1
|
precision
|
int
|
The precision level to apply to the merged tissues. If None, no rounding will be made. |
None
|